Significance of p53-binding protein 1 nuclear foci in uterine cervical lesions: endogenous DNA double strand breaks and genomic instability during carcinogenesis
نویسندگان
چکیده
AIMS A defective DNA damage response can result in genomic instability (GIN) and lead to transformation to cancer. As p53-binding protein 1 (53BP1) localizes at the sites of DNA double strand breaks (DSBs) and rapidly forms nuclear foci (NF), the presence of 53BP1 NF can be considered to be an indicator of endogenous DSBs reflecting GIN. Our aim was to analyse the presence of DSBs by immunofluorescence for 53BP1 expression in a series of cervical lesions, to evaluate the significance of GIN during carcinogenesis. METHODS AND RESULTS A total of 80 archival cervical tissue samples, including 11 normal, 16 cervical intraepithelial neoplasia (CIN)1, 15 CIN2, 24 CIN3 and 14 squamous cell carcinoma samples, were analysed for 53BP1 NF, human papillomavirus (HPV) infection, and p16(INK4a) overexpression. The number of 53BP1 NF in cervical cells appeared to increase with progression during carcinogenesis. The distribution of 53BP1 NF was similar to that of the punctate HPV signals as determined by in-situ hybridization and also to p16(INK4a) overexpression in CIN, suggesting an association with viral infection and replication stress. CONCLUSIONS Immunofluorescence analysis of 53BP1 expression can be a useful tool with which to estimate the level of GIN. During cervical carcinogenesis, GIN may allow further accumulation of genomic alterations, causing progression to invasive cancer.
منابع مشابه
Alteration of p53-binding protein 1 expression during skin carcinogenesis: association with genomic instability.
Epidermal cells are the first cells to be exposed to environmental genotoxic agents such as ultraviolet and ionizing radiations, which induce DNA double strand breaks (DSB) and activate DNA damage response (DDR) to maintain genomic integrity. Defective DDR can result in genomic instability (GIN) which is considered to be a central aspect of any carcinogenic process. P53-binding protein 1 (53BP1...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملp53 coordinates base excision repair to prevent genomic instability
DNA constantly undergoes chemical modification due to endogenous and exogenous mutagens. The DNA base excision repair (BER) pathway is the frontline mechanism handling the majority of these lesions, and primarily involves a DNA incision and subsequent resealing step. It is imperative that these processes are extremely well-coordinated as unrepaired DNA single strand breaks (SSBs) can be convert...
متن کاملYGR042W/MTE1 Functions in Double-Strand Break Repair with MPH1
Double-strand DNA breaks occur upon exposure of cells to agents such as ionizing radiation and ultraviolet light or indirectly through replication fork collapse at DNA damage sites. If left unrepaired double-strand breaks can cause genome instability and cell death. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination re-localize into discrete n...
متن کاملMTE1 Functions with MPH1 in Double-Strand Break Repair.
Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 59 شماره
صفحات -
تاریخ انتشار 2011